Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 307: 122528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522326

RESUMO

Piezoelectric biomaterials have demonstrated significant potential in the past few decades to heal damaged tissue and restore cellular functionalities. Herein, we discuss the role of bioelectricity in tissue remodeling and explore ways to mimic such tissue-like properties in synthetic biomaterials. In the past decade, biomedical engineers have adopted emerging functional biomaterials-based tissue engineering approaches using innovative bioelectronic stimulation protocols based on dynamic stimuli to direct cellular activation, proliferation, and differentiation on engineered biomaterial constructs. The primary focus of this review is to discuss the concepts of piezoelectric energy harvesting, piezoelectric materials, and their application in soft (skin and neural) and hard (dental and bone) tissue regeneration. While discussing the prospective applications as an engineered tissue, an important distinction has been made between piezoceramics, piezopolymers, and their composites. The superiority of piezopolymers over piezoceramics to circumvent issues such as stiffness mismatch, biocompatibility, and biodegradability are highlighted. We aim to provide a comprehensive review of the field and identify opportunities for the future to develop clinically relevant and state-of-the-art biomaterials for personalized and remote health care.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Engenharia Tecidual/métodos , Pele , Cicatrização , Engenharia Biomédica
2.
Adv Sci (Weinh) ; 11(4): e2307266, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032132

RESUMO

Triboelectrification necessitates a frictional interaction between two materials, and their contact electrification is characteristically based on the polarity variance in the triboelectric series. Utilizing this fundamental advantage of the triboelectric phenomenon, different materials can be identified according to their contact electrification capability. Herein, an in-depth analysis of the amino acids present in the stratum corneum of human skin is performed and these are quantified regarding triboelectric polarization. The principal focus of this study lies in analyzing and identifying the amino acids present in copious amounts in the stratum corneum to explain their positive behavior during the contact electrification process. Thus, an augmented triboelectric series of amino acids with quantified triboelectric charging polarity by scrutinizing the transfer charge, work function, and atomic percentage is presented. Furthermore, the chirality of aspartic acid as it is most susceptible to racemization with clear consequences on the human skin is detected. The study is expected to accelerate research exploiting triboelectrification and provide valuable information on the surface properties and biological activities of these important biomolecules.


Assuntos
Aminoácidos , Ácido Aspártico , Humanos , Epiderme , Pele , Propriedades de Superfície
3.
ACS Appl Mater Interfaces ; 16(1): 1502-1510, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147587

RESUMO

Development of rapid detection strategies that target potentially pathogenic bacteria has gained increasing attention due to the increasing awareness for better health and safety. In this study, we evaluate an intrinsically antimicrobial polymer, 2Gdm, which is a poly(norbornene)-based functional polymer featuring guanidinium groups as side chains, for bacterial detection by the means of triboelectric nanogenerators (TENGs) and triboelectric nanosensors (TENSs). Attachment of bacteria to the sensing layer is anticipated to alter the overall triboelectric properties of the underlying polymer layer. The positively charged guanidinium functional groups can interact with the negatively charged phospholipid bilayer of bacteria and lead to bacterial death, which can then be detected by optical microscopy, X-ray photoelectron microscopy, and more advanced self-powered sensing techniques such as TENGs and TENSs. The double bonds present along the poly(norbornene) backbone allow for thermally induced cross-linking to obtain X-2Gdm and thus rendering materials remain stable in water. By monitoring the change in voltage output after immersion in various concentrations of Gram-negative Escherichia coli (E. coli) and Gram-positive Streptococcus pneumoniae (S. pneumoniae), we have demonstrated the utility of X-2Gdm as a new polymer dielectric for autonomous bacterial detection. As the bacterial concentration increases, the amount of adsorbed bacteria also increases, resulting in a decrease in the surface potential of the X-2Gdm thin film; this reduction in surface potential can cause a decrease in the triboelectric output for both TENGs and TENSs, which serves as a key working mechanism for facile bacterial detection. TENG and TENS systems are capable of detecting E. coli and S. pneumoniae within a range of 4 × 105 to 4 × 108 CFU/mL with a limit of detection of 106 CFU/mL. This report highlights the promising prospects of employing TENGs and TENSs as innovative sensing technologies for rapid bacterial detection by leveraging the electrostatic interactions between bacterial cell membranes and cationic groups present on polymer surfaces.


Assuntos
Bactérias , Escherichia coli , Guanidina , Norbornanos , Poli A , Polímeros , Streptococcus pneumoniae
4.
Nanomaterials (Basel) ; 13(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836359

RESUMO

The quality of human life has improved thanks to the rapid development of wearable electronics. Previously, bulk structures were usually selected for the fabrication of high performance electronics, but these are not suitable for wearable electronics due to mobility limitations and comfortability. Fibrous material-based triboelectric nanogenerators (TENGs) can provide power to wearable electronics due to their advantages such as light weight, flexibility, stretchability, wearability, etc. In this work, various fiber materials, multiple fabrication methods, and fundamentals of TENGs are described. Moreover, recent advances in functional fiber-based wearable TENGs are introduced. Furthermore, the challenges to functional fiber-based TENGs are discussed, and possible solutions are suggested. Finally, the use of TENGs in hybrid devices is introduced for a broader introduction of fiber-based energy harvesting technologies.

5.
Nanoscale ; 15(34): 14205-14214, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594187

RESUMO

Renewable energy has been a focus in recent years. Triboelectric nanogenerators (TENGs) have potential for converting mechanical energy into electricity. However, there are restrictions on the use of biological materials and bionanocomposites, such as the high cost and complexity of the synthesis process, poor stability, and inadequate output performance. To overcome the constraints of TENGs, we have turned to hydroxyapatite, a biological substance with great biocompatibility and high mechanical strength that can be manufactured from waste materials. We successfully developed a negative triboelectric bionanocomposite hydroxyapatite (HA) loaded polydimethylsiloxane (PDMS) to harness energy from biomechanical sources such as wearable devices. A TENG (2 × 2 cm2) with a pushing force of 2 N and different amounts of HA in PDMS can produce highly stable output voltage, current, surface charge density, and power density values of 300 V, 22.4 µA, 90.36 µC m-2, and 27.34 W m-2, which are 6, 9, and 10 times higher than those without HA, respectively. These improvements were attributed to the highest observed surface potential of 1512 mV. After 20 000 cycles of contact-separation, the HA/PDMS-TENG shows exceptionally stable performance. Furthermore, adding HA improves the mechanical properties and the stretchability of the bionanocomposite. The HA/PDMS bionanocomposite exhibits remarkable stretchability of more than 290%. Effectively harvesting energy from body movements, the TENG gadget may be used to charge multiple commercial capacitors, drive up to 100 LEDs, and power a low-power electronic device. Self-powered sensing and wearable devices are made possible by the HA/PDMS-TENG, which allows their large-scale preparation and deployment.

6.
ACS Nano ; 17(10): 9140-9154, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37163347

RESUMO

An accurate method for neural stimulation within the brain could be very useful for treating brain circuit dysfunctions and neurological disorders. With the aim of developing such a method, this study investigated the use of piezoelectric molybdenum disulfide nanosheets (MoS2 NS) to remotely convert ultrasound energy into localized electrical stimulation in vitro and in vivo. The application of ultrasound to cells surrounding MoS2 NS required only a single pulse of 2 MHz ultrasound (400 kPa, 1,000,000 cycles, and 500 ms pulse duration) to elicit significant responses in 37.9 ± 7.4% of cells in terms of fluxes of calcium ions without detectable cellular damage. The proportion of responsive cells was mainly influenced by the acoustic pressure, number of ultrasound cycles, and concentration of MoS2 NS. Tests using appropriate blockers revealed that voltage-gated membrane channels were activated. In vivo data suggested that, with ultrasound stimulation, neurons closest to the MoS2 NS were 3-fold more likely to present c-Fos expression than cells far from the NS. The successful activation of neurons surrounding MoS2 NS suggests that this represents a method with high spatial precision for selectively modulating one or several targeted brain circuits.


Assuntos
Nanoestruturas , Neurônios
7.
ACS Nano ; 17(12): 11087-11219, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37219021

RESUMO

Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.

8.
Anal Chem ; 95(17): 6871-6878, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37080900

RESUMO

In this study, a rapid diagnosis platform was developed for the detection of Escherichia coli O157:H7. An electrical double layer (EDL)-gated field-effect transistor-based biosensor (BioFET) as a point-of-care testing device is demonstrated with its high sensitivity, portability, high selectivity, quick response, and ease of use. The specially designed ssDNA probe was immobilized on the extended gate electrode to bind the target complementary DNA segment of E. coli, resulting in a sharp drain current change within minutes. The limit of detection for target DNA is validated to a concentration of 1 fM in buffer solution and serum. Meanwhile, the results of a Kelvin probe force microscope were shown to have reduced surface potential of the DNA immobilized sensors before and after the cDNA detection, which is consistent with the decreased drain current of the BioFET. A 1.2 kb E. coli duplex DNA synthesized in plasmid was sonicated and detected in serum samples with the sensor array. Gel electrophoresis was used to confirm the efficiency of sonication by elucidating the length of DNA. Those results show that the EDL-gated BioFET system is a promising platform for rapid identification of pathogens for future clinical needs.


Assuntos
Técnicas Biossensoriais , Infecções por Escherichia coli , Escherichia coli O157 , Humanos , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples , Eletrodos , Escherichia coli O157/genética , DNA Bacteriano/genética
9.
Adv Mater ; 35(24): e2300283, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933229

RESUMO

Currently, wind energy harvesting is in the limelight. However, with the existing electromagnetic wind generators, it is difficult to harvest multifariously-wasted breezes. To harvest energy from winds at a wide range of speeds, wind-driven triboelectric nanogenerators (TENGs) are studied. However, a critical limitation of general wind-driven TENGs is that their power output is low. Therefore, an innovative strategy is necessary to generate high output power even from breeze. Herein, an approach to test a charge-polarization-based flutter-driven TENG (CPF-TENG) with ambient air ionizing channel (AAIC) is reported. Owing to AAIC, the device generates peak voltage and current outputs of 2000 V and 4 A, respectively. Moreover, because the proposed CPF-TENG can generate power from breeze, it can be stacked in series to completely harvest wind energy. The stacked CPF-TENG is demonstrated to operate 3000 light-emitting diodes (LEDs) and 12 hygrometers, separately, and produce hydrogen at a rate of 342.3 µL h-1 with the electrolysis cell.

10.
Chem Asian J ; 18(9): e202300090, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36920733

RESUMO

Catalysis plays a crucial role in all the major applications and challenges in the environment, including energy generation and environmental remediation. Although photocatalysts and electrocatalysts are useful in addressing energy and environmental issues, they have some major drawbacks, such as low efficiency and easy charge recombination which limits their applications. Hence, it is imperative to design and explore new catalytic techniques that include non-photoresponsive catalysts. In this review, the detailed possibilities, characteristics and prospects of non-photoresponsive catalysts, such as piezocatalysts, thermocatalysts, pyrocatalysts, and tribocatalysts along with hybrid catalysts are described. The overall mechanism of each catalytic technique and its applications in different fields such as energy generation, environmental remediation, and carbon dioxide reduction are discussed.

11.
Sci Adv ; 9(4): eadc8758, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696504

RESUMO

Interruption of the wound healing process due to pathogenic infection remains a major health care challenge. The existing methods for wound management require power sources that hinder their utilization outside of clinical settings. Here, a next generation of wearable self-powered wound dressing is developed, which can be activated by diverse stimuli from the patient's body and provide on-demand treatment for both normal and infected wounds. The highly tunable dressing is composed of thermocatalytic bismuth telluride nanoplates (Bi2Te3 NPs) functionalized onto carbon fiber fabric electrodes and triggered by the surrounding temperature difference to controllably generate hydrogen peroxide to effectively inhibit bacterial growth at the wound site. The integrated electrodes are connected to a wearable triboelectric nanogenerator (TENG) to provide electrical stimulation for accelerated wound closure by enhancing cellular proliferation, migration, and angiogenesis. The reported self-powered dressing holds great potential in facilitating personalized and user-friendly wound care with improved healing outcomes.


Assuntos
Bandagens , Cicatrização , Humanos , Fontes de Energia Elétrica
12.
ACS Nano ; 17(3): 2689-2701, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36700939

RESUMO

Rapid on-site detection of hazardous chemicals is imperative for remote security and environmental monitoring applications. However, the implementation of current sensing technologies in real environments is limited due to an external high-power requirement, poor selectivity and sensitivity. Recent progress in triboelectric nanosensors and nanogenerators presents tremendous opportunities to address these issues. Here, we report an innovative self-powered triboelectric nanosensor for detection of Hg2+ ions, a harmful chemical pollutant, in a rapid single step on-site detection mechanism. Based on the mechanism of solid-liquid contact electrification, tellurium nanowire (Te NW) arrays serving as a solid triboelectric material as well as the sensing probe underwent periodic contact and separation with the Hg2+ solution, leading to the in situ formation of mercury telluride nanowire (HgTe NWs) owing to the selective binding affinity of Te NWs toward Hg2+ ions. To realize the on-site sensing potential, Te NW arrays were mounted onto the robotic hands equipped with additional wireless transmission functionality for rapid detection of Hg2+ ions in resource-limited settings by employing a simple "touch and sense" mechanism. Such a demonstration of direct integration of self-powered sensors with robotics would lead to the development of low-cost, automated chemical sensing machinery for the on-field detection of harmful analytes.

13.
Biosens Bioelectron ; 219: 114783, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257116

RESUMO

The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.

14.
Small ; 19(9): e2205920, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36521932

RESUMO

BaTiO3 octahedra, edge-, and corner-truncated cubes, and cubes with four tunable sizes from 132 to 438 nm are synthesized by a solvothermal growth approach. Acetic acid treatment can cleanly remove BaCO3 impurity. Rietveld refinement of X-ray diffraction patterns and Raman spectra help to confirm the particles have a tetragonal crystal structure. The crystals also exhibit size- and facet-dependent bandgap shifts. BaTiO3 octahedra show larger piezoelectric, ferroelectric, and pyroelectric effects than truncated cubes and cubes. The measured dielectric constant differences should be associated with their various facet-dependent behaviors. Piezoelectric nanogenerators fabricated from BaTiO3 octahedra consistently show the best performance than those containing truncated cubes and cubes. In particular, a nanogenerator with 30 wt.%-incorporated octahedra displays an open-circuit voltage of 23 V and short-circuit current of 324 nA. The device performance is also highly stable. The maximum output power reaches 3.9 µW at 60 MΩ. The fabricated nanogenerator can provide sufficient electricity to power light-emitting diodes. This work further demonstrates that various physical properties of semiconductor crystals show surface dependence.

15.
Biosens Bioelectron ; 216: 114595, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973278

RESUMO

As a new type of energy harvesting technology, the triboelectric nanogenerator (TENG) can convert distributed energy into electrical energy. It is widely used in various fields such as wearable devices, biomedical devices, Internet of Things (IoT), natural environment, etc. However, there are still some issues that need to be solved for the commercial implementation of TENGs. This review focuses on four major kinds of applications for TENG as the platform of harvesting micro-nano energy: in vivo, in vitro, living environment and wild environment. The challenges and feasible techniques facing TENGs are summarized in three aspects, including low energy output, immature manufacturing technology and unreliable service life. We also review the recent progress in the strategies for improving the output performance and robustness of TENGs, including but not limited to material optimization, device engineering and power management. The aim is to establish a feasible framework of TENGs from laboratory to engineering application. Finally, the future trend of TENGs' application in distributed sensors and biomedical devices has prospected as a promising micro-nano energy for guiding the next innovation researches.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Elétrica , Eletricidade , Nanotecnologia/métodos
16.
Mikrochim Acta ; 189(6): 236, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35633385

RESUMO

Given the huge economic burden caused by chronic and acute diseases on human beings, it is an urgent requirement of a cost-effective diagnosis and monitoring process to treat and cure the disease in their preliminary stage to avoid severe complications. Wearable biosensors have been developed by using numerous materials for non-invasive, wireless, and consistent human health monitoring. Graphene, a 2D nanomaterial, has received considerable attention for the development of wearable biosensors due to its outstanding physical, chemical, and structural properties. Moreover, the extremely flexible, foldable, and biocompatible nature of graphene provide a wide scope for developing wearable biosensor devices. Therefore, graphene and its derivatives could be trending materials to fabricate wearable biosensor devices for remote human health management in the near future. Various biofluids and exhaled breath contain many relevant biomarkers which can be exploited by wearable biosensors non-invasively to identify diseases. In this article, we have discussed various methodologies and strategies for synthesizing and pattering graphene. Furthermore, general sensing mechanism of biosensors, and graphene-based biosensing devices for tear, sweat, interstitial fluid (ISF), saliva, and exhaled breath have also been explored and discussed thoroughly. Finally, current challenges and future prospective of graphene-based wearable biosensors have been evaluated with conclusion. Graphene is a promising 2D material for the development of wearable sensors. Various biofluids (sweat, tears, saliva and ISF) and exhaled breath contains many relevant biomarkers which facilitate in identify diseases. Biosensor is made up of biological recognition element such as enzyme, antibody, nucleic acid, hormone, organelle, or complete cell and physical (transducer, amplifier), provide fast response without causing organ harm.


Assuntos
Técnicas Biossensoriais , Líquidos Corporais , Grafite , Dispositivos Eletrônicos Vestíveis , Biomarcadores , Técnicas Biossensoriais/métodos , Grafite/química , Humanos
17.
Micromachines (Basel) ; 13(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457905

RESUMO

The reverse transcription-polymerase chain reaction (RT-PCR) has been utilized as an effective tool to diagnose the infectious diseases of viruses. In the present work, the oscillating thermocycler is fabricated and performed to carry out the one-step RT-PCR process successfully. The ribonucleic acid (RNA) mixture is pipetted into the fixed sample volume inside an aluminum reaction block. The sample oscillates the pathway onto the linear motion control system and through the specific RT-PCR heating zones with individual homemade thermal control modules. The present oscillating thermocycler combines the merits of the chamber type and the CF type systems. Before PCR, the reaction chamber moves to the low-temperature zone to complete the RT stage and synthesize the complementary deoxyribonucleic acid (DNA). Next, the low-temperature zone is regulated to the annealing zone. Furthermore, the reactive sample is moved back and forth among three isothermal zones to complete PCR. No extra heating zone is required for the RT stage. The total length of the moving displacement of the chamber is within 100 mm. The miniaturization of the oscillating thermocycler can be expected. In our oscillatory device, the denaturation zone located between the annealing and extension zones is suggested as the appropriate arrangement of the heating blocks. Heat management without thermal cross-talk is easy. Finally, an improved oscillating device is demonstrated to execute the RT-PCR process directly, utilized to amplify the canine distemper virus templates successfully, which could be well applied to a low-cost DNA analysis system in the future.

18.
Sci Technol Adv Mater ; 23(1): 1-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023999

RESUMO

The complex process of wound healing depends on the coordinated interaction between various immunological and biological systems, which can be aided by technology. This present review provides a broad overview of the medical applications of piezoelectric and triboelectric nanogenerators, focusing on their role in the development of wound healing technology. Based on the finding that the damaged epithelial layer of the wound generates an endogenous bioelectric field to regulate the wound healing process, development of technological device for providing an exogenous electric field has therefore been paid attention. Authors of this review focus on the design and application of piezoelectric and triboelectric materials to manufacture self-powered nanogenerators, and conclude with an outlook on the current challenges and future potential in meeting medical needs and commercialization.

19.
IEEE Trans Nanobioscience ; 21(3): 358-362, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34428149

RESUMO

A solid-liquid triboelectric nanogenerator (TENG) has attracted increasing research interest in relation to the development of regeneration energy based on water resources. The output of solid-liquid TENG remains unsolved, however, because of the low voltage output that impedes wide applications. To this end, in this work we developed a miniaturized microfluidic channel-based TENG device for highly efficient conversion of energy from the transport of a water droplet to an electrical output. We investigated an optimized design in a triboelectric material, the droplet transport and the electrostatic induction layer to provide a high voltage output and stable energy harvesting. The optimized device demonstrated maximum voltage amplitude 102 mV with an ultralow liquid consumption, 0.36 [Formula: see text], resulting in sample-energy conversion 283.33 mV/ [Formula: see text]. This novel device is expected potentially to address the limitations imposed by sample consumption in energy harvesting in the future.

20.
iScience ; 24(5): 102442, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34007961

RESUMO

Hydropower generation is a well-known electricity generation technique that uses Faraday's law and hydraulic turbines. Recently, a triboelectrification-based electricity generation device, using water as the triboelectric material (W-TEG) was developed. In addition to the enhancement of the electrical output performance through the operation mechanism, the characteristics of the W-TEG must be examined at the design level to facilitate its portable application. Therefore, in this work, we developed a portable water-sloshing-based electricity generator (PS-EG) that can produce a high electric output and achieved its closed-loop circuit design and quantitative analysis for portable applications. The proposed PS-EG produced peak open-circuit voltage (V OC ) and closed-circuit current (I CC ) of up to 484 V and 4.1 mA, respectively, when subjected to vibrations of 2 Hz. The proposed PS-EG can be effectively used as an auxiliary power source for small electronics and sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...